Phospholipase A(2) antagonists inhibit nocodazole-induced Golgi ministack formation: evidence of an ER intermediate and constitutive cycling.
نویسندگان
چکیده
Evidence has been presented both for and against obligate retrograde movement of resident Golgi proteins through the endoplasmic reticulum (ER) during nocodazole-induced Golgi ministack formation. Here, we studied the nocodazole-induced formation of ministacks using phospholipase A(2) (PLA(2)) antagonists, which have been shown previously to inhibit brefeldin A-stimulated Golgi-to-ER retrograde transport. Examination of clone 9 rat hepatocytes by immunofluorescence and immunoelectron microscopy revealed that a subset of PLA(2) antagonists prevented nocodazole-induced ministack formation by inhibiting two different trafficking pathways for resident Golgi enzymes; at 25 microM, retrograde Golgi-to-ER transport was inhibited, whereas at 5 microM, Golgi-to-ER trafficking was permitted, but resident Golgi enzymes accumulated in the ER. Moreover, resident Golgi enzymes gradually redistributed from the juxtanuclear Golgi or Golgi ministacks to the ER in cells treated with these PLA(2) antagonists alone. Not only was ER-to-Golgi transport of resident Golgi enzymes inhibited in cells treated with these PLA(2) antagonists, but transport of the vesicular stomatitis virus G protein out of the ER was also prevented. These results support a model of obligate retrograde recycling of Golgi resident enzymes during nocodazole-induced ministack formation and provide additional evidence that resident Golgi enzymes slowly and constitutively cycle between the Golgi and ER.
منابع مشابه
Poliovirus infection blocks ERGIC-to-Golgi trafficking and induces microtubule-dependent disruption of the Golgi complex.
Cells infected with poliovirus exhibit a rapid inhibition of protein secretion and disruption of the Golgi complex. Neither the precise step at which the virus inhibits protein secretion nor the fate of the Golgi complex during infection has been determined. We find that transport-vesicle exit from the endoplasmic reticulum (ER) and trafficking to the ER-Golgi intermediate compartment (ERGIC) a...
متن کاملCaveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps
Caveolin is a protein associated with the characteristic coats that decorate the cytoplasmic face of plasma membrane caveolae. Recently it was found that exposure of human fibroblasts to cholesterol oxidase (CO) rapidly induces caveolin to redistribute to the ER and then to the Golgi complex, and that subsequent removal of CO allows caveolin to return to the plasma membrane (Smart, E. J., Y.-S....
متن کاملRecycling of Golgi-resident Glycosyltransferases through the ER Reveals a Novel Pathway and Provides an Explanation for Nocodazole-induced Golgi Scattering
During microtubule depolymerization, the central, juxtanuclear Golgi apparatus scatters to multiple peripheral sites. We have tested here whether such scattering is due to a fragmentation process and subsequent outward tracking of Golgi units or if peripheral Golgi elements reform through a novel recycling pathway. To mark the Golgi in HeLa cells, we stably expressed the Golgi stack enzyme N-ac...
متن کاملCisternal rab proteins regulate Golgi apparatus redistribution in response to hypotonic stress.
We show that a physiological role of the extensively studied cisternal Golgi rab protein, rab6, is modulation of Golgi apparatus response to stress. Taking exposure of cells to hypotonic media as the best-known example of mammalian Golgi stress response, we found that hypotonic-induced tubule extension from the Golgi apparatus was sensitive to GDP-rab6a expression. Similarly, we found that Golg...
متن کاملThe Mammalian Protein (rbet1) Homologous to Yeast Bet1p Is Primarily Associated with the Pre-Golgi Intermediate Compartment and Is Involved in Vesicular Transport from the Endoplasmic Reticulum to the Golgi Apparatus
Yeast Bet1p participates in vesicular transport from the endoplasmic reticulum to the Golgi apparatus and functions as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) associated with ER-derived vesicles. A mammalian protein (rbet1) homologous to Bet1p was recently identified, and it was concluded that rbet1 is associated with the Golgi apparatus based on the subc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 10 12 شماره
صفحات -
تاریخ انتشار 1999